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Abstract. A quantum dynamical treatment of the S-G effect, to the leading order in |e|/√�c ≡ √
α for

the electron, where α is the fine-structure constant, and for spin 1/2 charged particles (e.g., the proton),
in general, leads to a unitary expression for the probability density on the observation screen, where the
magnetic field has a controllable longitudinal uniform component along the initial average direction of
propagation of the particle, in addition to a non-uniform, almost longitudinal, magnetic field lying in
the plane defined by the quantization axis, in question, of the spin and the initial average direction of
propagation.

PACS. 03.65.-w Quantum mechanics – 03.65.Nk Scattering theory – 24.70.+s Polarization phenomena
in reactions

1 Introduction

Much effort has been done in the literature (e.g., [1–9]) on
the theoretical description of the S-G [10–12] effect over
the years. Unfortunately, there does not seem to exist an
analytical dynamical treatment of the problem which is:
(1) quantum mechanical, and takes into account (2) the
field equation ∇ · B = 0, (3) the quantum counterpart
of the Lorentz force, (4) the two, rather than one, dimen-
sional aspect of the beam hitting the observation screen,
(5) the rather non-trivial correlations that occur between
the dynamical variables, as will be shown, to exist, de-
scribing the intensity distribution on the screen. It is the
purpose of this paper to carry out a theoretical analysis of
the problem which takes into account all of the above five
points just mentioned. An analytical dynamical treatment
of the S-G effect to the leading order in |e|/√�c ≡ √

α for
the electron, where α is the fine-structure constant, and
for spin 1/2 charged particles (e.g. the proton), in gen-
eral, leads to a unitary, i.e., positive definite, expression
for the probability intensity distribution on the observa-
tion screen, where the magnetic field has a controllable
uniform component along the initial average direction of
propagation of the particle, in addition to a non-uniform,
almost longitudinal, magnetic field lying in the longitudi-
nal plane defined by the quantization axis, in question, of
the spin and the initial average direction of propagation.
With an initially prepared Gaussian wavepacket, it leads
to a sum of so-called bivariate normal distributions for the
probability intensity distribution with non-zero correla-
tion [13]. The uniform longitudinal controllable magnetic

a e-mail: edouard@ccs.sut.ac.th

field, as will be shown, has a dual role in our analysis.
Although longitudinal, it reduces effectively the quantum
Lorentz force contribution by reducing, in turn, the cor-
relation between the dynamical variables describing the
probability density of observation, and also provides a pos-
itive definite expression for the latter.

It is perhaps surprising, but nevertheless well-
known [2,11,12], that the S-G experiment, as such a ba-
sic experiment of quantum physics, has not been carried
out for the electron. The reason for the obstacle in carry-
ing out the experiment, is that the Lorentz force arising
form a transversal magnetic field to the initial average
direction of propagation, in the classic apparatus, causes
an obvious deviation of the particle from its initial path
thus leading to a blurring [2,14] of the expected splitting
of a beam. Because of this, the feasibility of performing
the experiment with longitudinal non-uniform magnetic
fields was emphasized many years ago [14] and emphasized
again and brought to the attention of the physics commu-
nity recently [2]. Another aspect of a transversal magnetic
field is that a non-uniform magnetic field perpendicular to
the non-uniform component along the quantization axis of
the spin, tends to cause, in general, a further splitting of
the beam in a direction perpendicular to the quantization
axis as well. The importance of the consideration of the
S-G effect for the electron itself is evident. To this end,
it worth recalling the statement made by Albert Einstein:
“... We know, it would be sufficient to really understand
the electron” as quoted in [12]. As a quantum measure-
ment problem, the one involving the S-G effect is perhaps
the simplest [4–6,12,13,15,16] and one of the easiest for
interpretation. Finally, we will see that our analysis also
applies to neutral particles.
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2 Preliminaries

We consider the Pauli Hamiltonian

H =

(
p− q

cA
)2

2M
− µ · B (2.1)

with

B = ∇ × A, ∇ ·A = 0 (2.2)

µ = µσ, µ =
q�

4Mc
g (2.3)

and where the σi denote the Pauli matrices. For g-factor
one has, e.g., g � 2 for the electron and g � 5.59 for the
proton. In terms of the dimensionless parameter

αq =
|q|2
�c

, ε(q) = sgn(q) (2.4)

we may write the interaction Hamiltonian in (2.1) as

HI = ε(q)
√

αq

×
[
−
√

�

c
A · p + ε(q)

√
αq

�

2Mc
A2 − 1

4M

√
�3

c
gσ · B

]
.

(2.5)

For the electron, q = −|e|, α denotes the fine-structure
constant.

For the initial wavepacket (t = 0), in the x-description,
we take the Gaussian type

Ψ0(x) =
1

(2π)3/4γ3/2
exp

(
i
�
p0 · x

)
exp

(
− x2

4γ2

)
(2.6)

where we have denoted the variance by γ2 in order not to
confuse it with the Pauli matrices, and

p0 = (0, p0, 0). (2.7)

Here the x2-axis denotes the initial average direction of
propagation of the particle. In the absence of a magnetic
field, the state function in (2.6) evolves in time to

Ψ0(x, t) =

e
i
�
p0·xe

−ip2
0t

2M�

(2π)3/4γ3/2
(
1 + i�t

2Mγ2

)3/2
exp


−

(
x − p0

M t
)2

4γ2
(
1 + i�t

2Mγ2

)



(2.8)

and

|Ψ0(x, t)|2 =
1

(2π)3/2γ3(t)
exp

(
−
(
x − p0

M t
)2

2γ2(t)

)
(2.9)

where

γ(t) = γ

(
1 +

h2t2

4M2γ4

)1/2

. (2.10)

Here we have chosen a common γ-width in all directions
to simplify the grouping together of the various terms in
the final expression for the probability density in carrying
out the x2-integration. This is not a serious restriction.

For the magnetic field we choose the simple form

B = (0, b − βx2, βx3) (2.11)

with

A = (bx3, βx1x3, βx1x2) (2.12)

satisfying (2.2), where b and β are some constants. We
note that the component (b − βx2) is along the initial
average direction of propagation specified by p0. The ob-
servation screen is defined by the (x1, x3)-plan for t > 0,
with x3 denoting the traditional quantization axis of the
spin. We will see that the uniform part (0, b, 0) of the
magnetic field, although longitudinal, may be appropri-
ately set up to effectively reduce the quantum mechanical
counterpart of the Lorentz-force contribution by reducing,
in turn, the correlation that occurs between the x1 and x3

variables on the screen, an also provide a positive definite
expression for the probability density distribution in ques-
tion. Concerning the non-uniform part (0,−βx2, βx3) of
the magnetic field, we note that since |x2|, a macroscopic
distance, is much larger than |x3| (providing a measure of
the splitting of the beam), this non-uniform magnetic field
is almost longitudinal along the direction of propagation.

In the above set up, as a working hypothesis, we treat
the particles as if they are throughout in the magnetic
field. Otherwise, an analytical treatment is not so manage-
able. We hope to turn to a such refinement in a subsequent
report.

The dynamics is most elegantly described in terms of
the density operator, which at t = 0, is given by

ρ = ω+

(
1
0

)
|Ψ〉〈Ψ |(1 0

)
+ ω−

(
0
1

)
|Ψ〉〈Ψ |(0 1

)
(2.13)

where

ω+ + ω− = 1 (2.14)

for

ω+ = ω− =
1
2

(2.15)

one would be dealing with an unpolarized beam. For t > 0,
the density operator is given by

ρ(t) = ω+e−
it
�

H

(
1
0

)
|Ψ〉〈Ψ |(1 0

)
e

it
�

H

+ ω−e−
it
�

H

(
0
1

)
|Ψ〉〈Ψ |(0 1

)
e

it
�

H . (2.16)

The probability density is then (for t > 0)

〈x|ρ(t)|x〉 (2.17)
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and for the probability density, in question, on the screen
one may then most conveniently write it as

f(x1, x3; t) =
∫ ∞

−∞
dx2〈x|ρ(t)|x〉

= ω+

∫ ∞

−∞
dx2

∣∣∣〈x|e− it
�

H

(
1
0

)
|Ψ〉
∣∣∣2

+ ω−
∫ ∞

−∞
dx2

∣∣∣〈x|e− it
�

H

(
0
1

)
|Ψ〉
∣∣∣2 (2.18)

where we note the unitarity of exp(−itH/�), and the or-
thogonality of

(
1 0) and

(
0 1).

3 The intensity distribution

With exp(−itH/�) as the time-evolution operator, the fol-
lowing expectation values of the Heisenberg operators in
the state (2.6), relevant to the observation screen, to the
leading order in √

αq, are readily obtained:

〈x1(t)〉 = 0 (3.1)

〈x3(t)〉 =
µβ

2M
σ3t

2 (3.2)

and the important non-trivial correlation occurring be-
tween the dynamical variables x1(t), x3(t):

〈(x1(t) − 〈x1(t)〉)(x3(t) − 〈x3(t)〉)〉 =

− qbtγ2

Mc
+

qβp0t
2γ2

2M2c
+

qβp0t
4
�

2

24M2γ2c
(3.3)

with

(〈
(x1(t) − 〈x1(t)〉)2

〉)1/2
=(〈

(x3(t) − 〈x3(t)〉)2
〉)1/2

= γ(t). (3.4)

To study the probability intensity distribution, we note
the following commutation relations:[

p2

2M
, HI

]
=

i�qβ

M2c
x3p1p2 +

i�q

M2c
(βx2 + b)p1p3

+
2i�qβ

M2c
x1p2p3 − i�µβ

M
σ2p2

+
i�µβ

M
σ3p3 (3.5)[

p2

2M
,

[
p2

2M
, HI

]]
=

4�
2qβ

M3c
p1p2p3 (3.6)

with all the other commutators with p2/2M vanish or are
of higher order. We use a variation of the Baker-Campbell-
Hausdorff formula: if

[B, [A, B]] = 0 (3.7)
[B, [A, [A, B]]] = 0 (3.8)
[A, [A, [A, B]]] = 0 (3.9)

for two operators A, B, then

eA+B = e(
1
2 [A,B]+ 1

6 [A,[A,B]])eBeA. (3.10)

We let

A = − it
�

p2

2M
(3.11)

B = − it
�

HI (3.12)

and note that (3.7–3.9) hold true to the accuracy retained.
Equation (3.10) then gives

exp
(
− it

�
H

)
= exp

(
− t2

2�2

[
p2

2M
, HI

])

× exp
(

2it3qβ
3�M3c

p1p2p3

)

× exp
(
− it

�
HI

)
exp

(
− it

�
H0

)
(3.13)

where H0 = p2/2M is the free Hamiltonian, and
(exp(−itH0/�)Ψ)(x) ≡ Ψ0(x, t) is explicitly given in (2.8).

To carry out the time-evolution operation given
in (3.13) on Ψ we use, in the process, the identity

eia p
� f(x) = f(x + a). (3.14)

The operation defined on the right-hand side of (3.13)
on Ψ may be then carried out. The analysis is very tedious
but straightforward. Up to a normalization factor, and the
phase factor exp(itp0 · x/�), (exp(−itH/�)Ψ)(x), is given
by the expression:

F1(x1, x2 − p0

M
t, x3; t)F2

(
x2 − p0

M
t; t
)

F3(x1, x3; t)

(3.15)
where we have conveniently isolated the terms dependent
on the variable x2, in the two factors F1, F2, as we have
to integrate over it as indicated in (2.18). With

x′
2 = x2 − p0

M
t (3.16)

F =
1

4γ2
(
1 + i�t

2Mγ2

) ≡ F (t) (3.17)

we have

F1(x1, x
′
2, x3) = exp

(−x′2
2 F
)
exp

(
−4tqβ

Mc
x1x

′
2x3F

)

× exp
(

8i�qβt2

M2c
x1x

′
2x3F

2

)
exp

(
16qβ�

2t3

3M3c
x1x

′
2x3F

3

)
(3.18)

and

F2(x′
2; t) = exp

(
itµ
�

σ2

(
b − β

p0

M
t
))

exp
(
− itµβσ2

�
x′

2

)

× exp
(

ip0µβt2

2�M
σ2

)
exp

(
−µβt2

M
σ2x

′
2F

)
(3.19)
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F3(x1, x3; t) = exp
(

itqβp0

�Mc
x1x3

)
exp

(
itµβ

�
σ3x3

)

× exp
(

p0qβt2

M2c
x1x3F

)
exp

(
−2tqb

Mc
x1x3F

)

× exp
(
−8ip0t

3qβ�

3M3c
x1x3F

2

)
exp

(
µβt2

M
σ3x3F

)

×exp
(

2i�qt2

M2c

(
β

p0

M
t + b

)
x1x3F

2

)
exp

(− (x2
1 + x2

3

)
F
)
.

(3.20)

Now we have to apply the operator (F1F2F3) in (3.15)

to
(

1
0

)
and

(
0
1

)
, and perform the operations defined

in (2.18). To this end, we use the identities:

σ3

(
1
0

)
=
(

1
0

)
, σ3

(
0
1

)
= −

(
0
1

)
(3.21)

(
1
0

)
=

1
2

(
1
i

)
+

1
2

(
1
−i

)
(3.22)

(
0
1

)
= − i

2

(
1
i

)
+

i
2

(
1
−i

)
(3.23)

σ2

(
1
i

)
=
(

1
i

)
, σ2

(
1
−i

)
= −

(
1
−i

)
(3.24)

and the orthogonality of
(
1 i

)
,
(
1 − i

)
. Also we note

that

F (t) + F ∗(t) =
1

2γ2(t)
(3.25)

iF (t) + (iF (t))∗ =
1

4γ2(t)
�t

Mγ2
(3.26)

iF 2(t) +
(
iF 2(t)

)∗
=

1
8γ4(t)

�t

Mγ2
· (3.27)

From (3.15–3.27) we obtain, up to a normalization factor,
the following expression for the x2-integrand in (2.18):

exp
(
− 1

2γ2(t)
[
x′2

2 + a(t)x1x
′
2x3

]) [
exp

(
t2

2γ2(t)
µβ

M
x′

2

)

+ exp
(
− t2

2γ2(t)
µβ

M
x′

2

)]
f(x1, x3; t) (3.28)

where a(t), of order √
αq, is a function of t only, and up

to a mutiplicative time-dependent constant,

f(x1, x3; t) ≡ ω+f+(x1, x3; t) + ω−f−(x1, x3; t)

= ω+ exp
(
− 1

2γ2(t)

[
x2

1 + x2
3 −

t2

M
µβx3 − xiAijxj

γ2(t)

])

+ ω− exp
(
− 1

2γ2(t)

[
x2

1 + x2
3 +

t2

M
µβx3 − xiAijxj

γ2(t)

])
.

(3.29)

A summation over the repeated indices i, j = 1, 3 in (3.29)
is understood,

A13 = A31 = −qbtγ2

Mc
+

qβp0t
2γ2

2M2c
+

qβp0t
4
�

2

24M4γ2c
,

A11 = A33 = 0. (3.30)

The later expression in (3.30) is identical to the correlation
of the dynamical variables x1(t), x3(t) in (3.3).

In reference to the x2-integral in (2.18), we have, with

b(t) =
µβt2

M
(3.31)

for the shifted x′
2-integral,

∫ ∞

−∞
dx′

2 exp
(
− 1

2γ2(t)
(x′2

2 + [a(t)x1x3 ± b(t)]x′
2)
)

=

√
2πγ(t) exp

(
1

8γ2(t)
[a(t)x1x3 ± b(t)]2

)
(3.32)

where [a(t)x1x3 ± b(t)]2 is necessarily of a higher order
correction in √

αq.
Accordingly, for the probability density f(x1, x3; t) we

obtain the preliminary expression given in (3.29). Upon
setting

〈g〉±t =
∫

dx1dx3g(x1, x3)f±(x1, x3; t) (3.33)

〈g〉±0 = 〈g〉± (3.34)

where γ(t) as defined in (2.10), we note that any signifi-
cant correction to the one derived in (3.29) consistent with
following constraints, as dictated by the explicit expecta-
tion values in (3.1–3.4), normalizability and positivity, are
easily obtained:

C.1 − 〈x1〉±t = 0 + higher orders

C.2 − 〈x3〉±t =
µβt2

2M
〈σ3〉± + higher orders

C.3 −
√
〈x2

1〉±t 〉 = γ(t) + higher orders

C.4 −
(
〈x2

3〉±t −
(〈

x2
3

〉±
t

)2
)1/2

= γ(t) + higher orders

C.5 − 〈(
x1 − 〈x1〉±t

) (
x3 − 〈x3〉±t

)〉±
t

=A13+higher orders

C.6 −
∫

dx1dx3f(x1, x3; t) = 1

C.7 − f(x1, x3; t) is real and positive

where A13 is given in (3.3, 3.30), and higher orders stand
relative to the parameter √

αq.
To satisfy, in the process, constraint C.2 (see

also (3.2)), we multiply the right-hand side of (3.29) by
an overall normalizing factor exp

(−(µβt2/2M)2/2γ2(t)
)
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giving

f(x1, x3; t) ∝

ω+ exp

(
− 1

2γ2(t)

[
x2

1 +
(

x3 − µβt2

2M

)2

− xiAijxj

γ2(t)

])

+ ω− exp

(
− 1

2γ2(t)

[
x2

1 +
(

x3 +
µβt2

2M

)2

− xiAijxj

γ2(t)

])
.

(3.35)

Consistency with the constraints C.1–C.6 necessarily gives

f(x1, x3; t) =

√
det C

∼

2π




ω+ exp
(
−1

2
(xi − xi0)Cij(xj − xj0)

)

+ω− exp
(
−1

2
(xi + xi0)Cij(xj + xj0)

)



(3.36)

where [C
∼

] = [Cij ], C11 = C33 = 1/γ2(t), i, j = 1, 3,

C13 = C31

=
1

γ4(t)

(
qbtγ2

Mc
− qβp0t

2γ2

2M2c
− qβp0t

4
�

2

24M4γ2c

)
(3.37)

xi0 =
µβ

2M
t2δi3 (3.38)

and ω+ = ω− = 1/2 for an unpolarized beam.
The probability density in (3.36) is a sum of bivariate

normal distributions (e.g., [11]) and[
Σij
]

=
[
[C

∼

−1]ij
]

(3.39)

is the so-called covariance matrix describing the correla-
tion between x1 and x3 on the screen for i �= j. Σ

∼
is

a measure of dispersion in all directions in the (x1, x3)-
plane. The multiplicative factor

√
detC

∼
/2π is the stan-

dard normalization factor.
Finally, the constrain C.7 implies that det C

∼
> 0, i.e.,

it leads to a positivity requirement. This in turn implies
that we should have

|q|t
Mc

∣∣∣b − βp0

2M
t − βp0t

3
�

2

24M3γ4

∣∣∣ < 1 +
�

2t2

4M2γ4
· (3.40)

In reference to this inequality consider first the case
with b = 0, i.e., the constraint

C < 1 +
�

2t2

4M2γ4
(3.41)

with

C =
|q|βp0t

2

2M2c

(
1 +

�
2t2

12M2γ4

)
. (3.42)

By setting,

∆z =
|µ|βt2

2M
(3.43)

p0

M
t = L (3.44)

with the latter denoting the macroscopic distance from
the particle’s initial center of the wavepacket to the ob-
servation screen, we may rewrite C as

C =
4L

|g|
M

�

∆z

t

(
1 +

�
2t2

12M2γ4

)
. (3.45)

For the electron with ∆z � 10−3 m, t � 10−6 s, L � 1 m,
γ < 10−6 m

C � 1.73 × 107

(
1 +

1.12 × 10−21

γ4

)

which is a very large number and the positivity constraint
in (3.41) cannot be satisfied. On the other hand, the uni-
form magnetic field (0, b, 0) may a priori be set at

b =
β

2
L (3.46)

defined simply in terms of the non-uniform magnetic field
gradient ∂B2/∂x2 = −β = −∂B3/∂x3 (see (2.11)) cho-
sen, and the distance to the observation screen L, inde-
pendently of any of the details of the spin 1/2 charged
particle considered and of the (initial) spread γ. [The uni-
form magnetic field component b may be, of course, chosen
so that C13 = 0, but this would mean to choose a different
uniform magnetic field for every different charged parti-
cle, and a different spread γ, and would not be physically
as interesting.] The matrix elements in (3.37) then simply
become

C13 = C31 = −ε(q)
1

3|g|
∆z

γ

L

γ

�t

M

1
γ4(t)

(3.47)

and the positivity constraint

1
3|g|

∆z

γ

L

γ

�t

Mγ2
< 1 +

�
2t2

4M2γ4
(3.48)

is readily satisfied. For example, for the electron
with ∆z = 10−3 m, L = 0.7 m, γ = 0.55 × 10−3 m,
t = 4 × 10−6 s, corresponding to an initial average
speed of 1.75 × 105 m/s, a magnetic field gradient β =
12.280 T/m, and a uniform longitudinal magnetic field b =
4.298 T, the left-hand side of (3.48) is � 0.59. In Fig-
ure 1, the probability density f(x1, x3; t) for B = 0,
t = 4 × 10−6 s is plotted for γ = 0.55 × 10−3 m and
the corresponding density for B �= 0, for the above just
given parameters, is plotted in Figure 2, for an initially
unpolarized beam, showing a clear splitting of the beam
along the quantization axis. [The magnetic field b may be
chosen to be even smaller. For example, for slower elec-
trons t = 5.93 × 10−6 s, L = 0.5 m, b = 1.4 T consistent
with (3.48).] The asymmetry with elongations in the sec-
ond and the fourth quadrants in Figure 2 are easy to un-
derstand. For the electron ε(q) = −1, C13 = C31 > 0 and
the probability density gets, respectively, positive ampli-
fying contributions for x3 > x30, x1 < 0 and x3 < −x30,
x1 > 0. This graph corresponds to a negatively charged
particle. The formal physical argument for this asymme-
try is that it arises as a consequence of the direction of the
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Fig. 1. Plot of the density f(x1, x3; t) for B = 0, γ = 0.55 ×
10−3 m, t = 4 × 10−6 s.

Fig. 2. Plot of the density f(x1, x3; t) for the electron, based
on (3.36, 3.46, 3.47) with ∆z = 10−3 m, γ = 0.55×10−3 m, t =
4×10−6 s, L = 0.7 m, corresponding to an initial average speed
of 1.75 × 105 m/s, a magnetic field gradient β = 12.280 T/m,
and a uniform longitudinal magnetic field b = 4.298 T.

Lorentz force, as determined by the so-called right-hand
rule, on a charged particle as applied to the transverse part
of the non-uniform magnetic field. For a positive charge,
the elongations in opposite directions occur in the corre-
sponding first and third quadrants.

Fig. 3. Plot of the density f(x1, x3; t) for uncharged particles,
based on (3.49) for, |x0| = 1 × 10−3 m, γ = 0.55 × 10−3 m,
t = 4 × 10−6 s.

We note that the correlation in (3.3) and C13 = C31

in (3.37) vanish for neutral particles. The analysis carried
above (with C13 = C31 set equal to zero), is equally valid
for neutral spin 1/2 particles with magnetic moment µ =
µσ, as carried to the leading order in M |µ|/|g| (�3c

)1/2,
and finally leads to the expression

f(x1, x3; t) =

1
2πγ2(t)




ω+ exp
(
−1

2
x2

1 + (x3 − x0)2

γ2(t)

)

+ω− exp
(
−1

2
x2

1 + (x3 + x0)2

γ2(t)

)

 (3.49)

where x0 = µβt2/2M . For an unpolarized beam, this is
plotted in Figure 3 for t = 4 × 10−6 s, |x0| = 1 × 10−3 m,
γ = 0.55× 10−3 m, showing the difference of the densities
for the charged and uncharged cases in the presence of an
appropriately chosen longitudinal uniform magnetic field.

It is expected that an experiment, as described in the
bulk of this work, may be indeed carried out with rela-
tively small magnetic fields and we hope that it will en-
courage experimentalists to do so.

References
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